# Contract Design Under Uncertainty

Tal Alon | PhD Candidate @ Technion, Israel Institue of Technology Joint work with Paul Dütting, Yingkai Li, and Inbal Talgam-Cohen

> Google - Mountain View (Global HQ) September 19, 2023



# Modern Algorithms in Society

 $\circ$  Interactions with  ${\ensuremath{\mathsf{self}}\xspace{-interested}}$  individuals

o Challenges beyond computational tractability

o Take incentives into account



# Social Media Marketing

- o Paid Ads in the social platform feed
- o Influencer Marketing a brand hires popular users



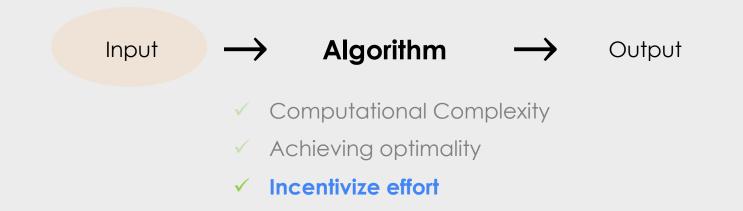
#### Paid Ads

 $\circ$  Algorithmic **auction** - advertisers bid  $\rightarrow$  allocation and payments



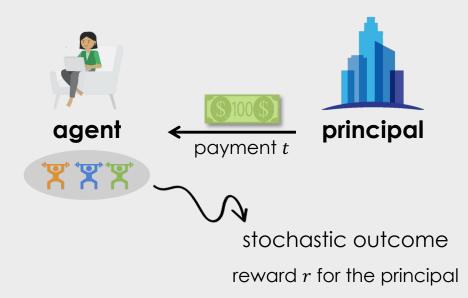
# Influencer Marketing

• The algorithm determines a **contract** to incentivize effort



## The Principal-Agent Problem [GH83]

- Moral hazard the agent's actions cannot be observed
- Objective: a contract maximizing expected rewards minus payment  $\mathbb{E}[r-t]$



### Research Agenda

Generalizations of the classic model:

- Personalization for participants from diverse population (with types)
- o Multilateral contracts involving multiple principals or agents
- o The need for simple contracts

### Research Agenda

Generalizations of the classic model:

#### • Personalization for participants from diverse population (with types)

• Multilateral contracts involving multiple principals or agents

• The need for **simple** contracts

### Research Agenda



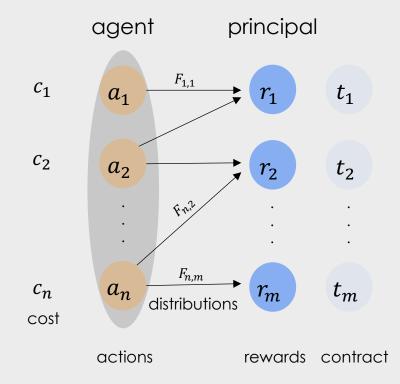
### Outline

- Single-parameter model of types [ADT.C. EC'21]
  - Motivated by single-parameter auction design
- Characterization of the design space [ADT.C. EC'21]
- Counter-intuitive and undesirable properties of optimal contracts [ADLT.C. EC'23]
- o Linear contracts (aka commission-based) are near-optimal [ADLT.C. EC'23]

**Recent works on contracts with types.** Myerson (1982), Guruganesh et al. (2021), Castiglioni et al. (2021), Gottlieb and Moreira (2022), Casto-Pire et al. (2022).

#### The Model

• The classic principal-agent model by Grossman-Hart (1983)



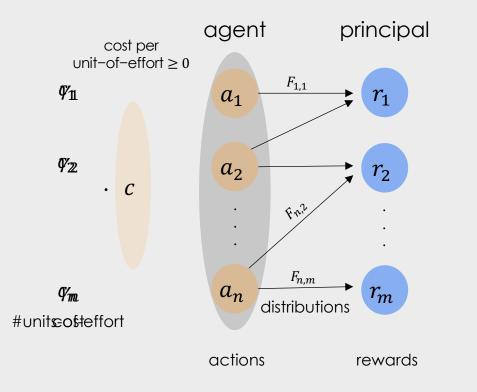
Notation.  $T_i = \mathbb{E}_{j \sim F_i}[t_j], R_i = \mathbb{E}_{j \sim F_i}[r_j]$ 

• Agent's action  $i^*$  maximizes  $T_i - c_i$ 

• Principal's revenue  $R_{i^*} - T_{i^*}$ 

#### The Model

• Type is drawn from G with density g supported on  $C = [\underline{c}, \overline{c}]$ 



#### The Model

 $\circ$  A contract (*x*, *t*) consists of two mappings:

 $\circ$  **Payment rule**  $t: C \rightarrow \mathbb{R}^m$  from types to a **paymet** scheme

• Allocation rule  $x: C \rightarrow [n]$  from types to an action recommendation

Notation.  $T_i^c = \mathbb{E}_{j \sim F_i}[t(c)_j]$ 

• Agent *c* report  $\hat{c}$  and action  $i^*(c)$  maximize  $T_{i^*(c)}^{\hat{c}} - \gamma_{i^*(c)}c$ 

• A contract (x, t) is incentive compatible (IC) if  $c = \hat{c}$  and  $x(c) = i^*(c)$ 

• Principal's contract maximizes  $\mathbb{E}_{c\sim G}[R_{x(c)} - T_{x(c)}^{c}]$  s.t. IC

• Welfare sum of utilities  $\mathbb{E}_{c \sim G}[R_{i^*(c)} - \gamma_{i^*(c)}c]$ 

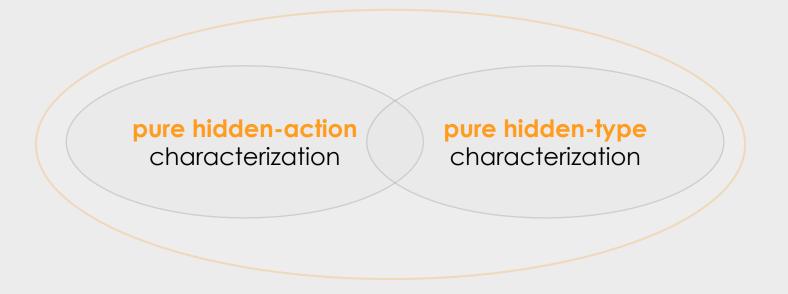
**Definition.** Allocation rule x is **implementable** if exists payment rule t s.t. (x, t) is IC

Q. What do implementable allocation rules look like?

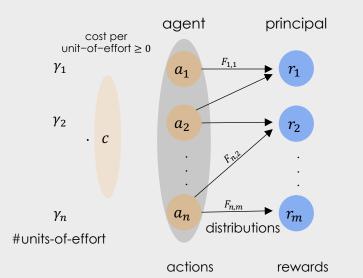
pure hidden-action characterization pure hidden-type characterization

**Definition.** Allocation rule x is **implementable** if exists payment rule t s.t. (x, t) is IC

**Q**. What do implementable allocation rules look like?



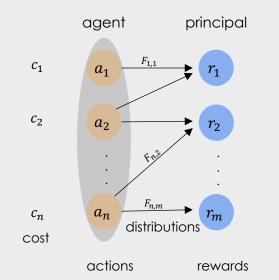
#### Pure hidden action



#### Pure hidden action

• x is **implementable**  $\Leftrightarrow$  exists no **deviation scheme**  $\lambda_k$  s.t. (1) dominant distribution  $\sum_k \lambda_k F_k \ge F_x$ 

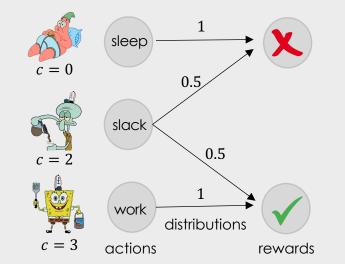
(2) strictly lower cost  $\sum_k \lambda_k c_k < c_x$ 



#### Pure hidden action

• x is **implementable**  $\Leftrightarrow$  exists no **deviation scheme**  $\lambda_k$  s.t. (1) dominant distribution  $\sum_k \lambda_k F_k \ge F_x$ 

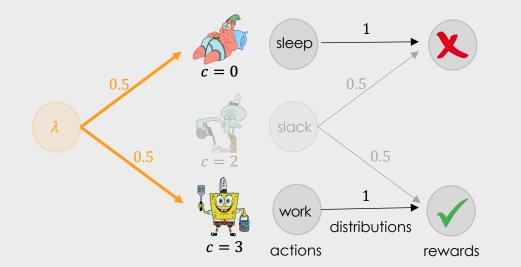
(2) strictly lower cost  $\sum_k \lambda_k c_k < c_x$ 



#### Pure hidden action

• x is **implementable**  $\Leftrightarrow$  exists no **deviation scheme**  $\lambda_k$  s.t. (1) dominant distribution  $\sum_k \lambda_k F_k \ge F_x$ 

(2) strictly lower cost  $\sum_k \lambda_k c_k < c_x$ 

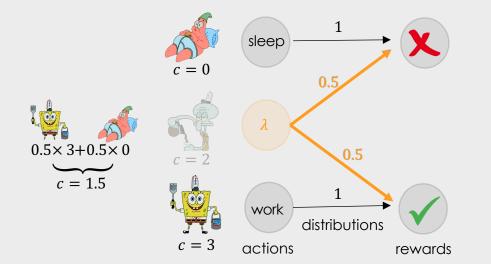




#### Pure hidden action

• x is **implementable**  $\Leftrightarrow$  exists no **deviation scheme**  $\lambda_k$  s.t. (1) dominant distribution  $\sum_k \lambda_k F_k \ge F_x$ 

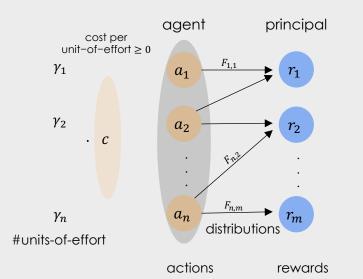
(2) strictly lower cost  $\sum_k \lambda_k c_k < c_x$ 





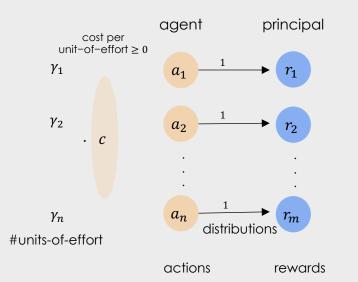
• LP duality approach

#### Pure hidden type



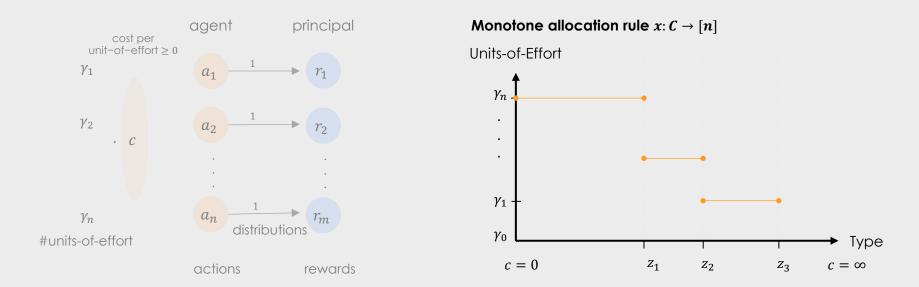
#### Pure hidden type

• x is implementable  $\Leftrightarrow$  x is monotone [Myerson 1981]

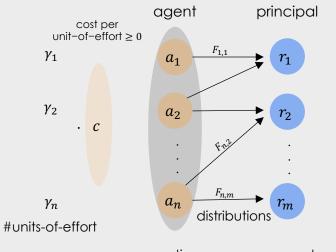


#### Pure hidden type

• x is implementable  $\Leftrightarrow$  x is monotone [Myerson 1981]



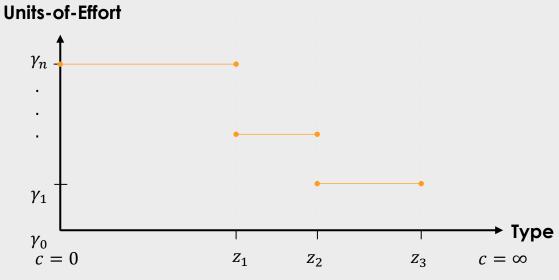
Hidden type and hidden action



actions rewards

#### Hidden type and hidden action

**Proposition [ADT EC'21].** If x is implementable, it is monotone



Monotone piecewise-constant allocation rule  $x: C \rightarrow [n]$ 

**Theorem [ADT EC'21].** x implementable  $\Leftrightarrow$  exists no deviation scheme  $\lambda_{(z,k)}$  s.t.

- (1) dominant sum of distributions  $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost  $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$

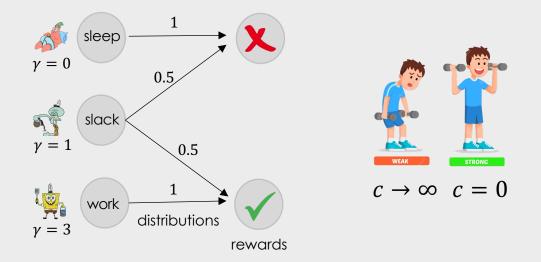
#### **Corollary** [ADT EC'21]. Optimal contract is **polytime computable** for const #actions

Hardness for constant #actions in the multi-parameter model [Guruganesh-Schneider-Wang'21]

#### Example

**Theorem [ADT EC'21].** x implementable  $\Leftrightarrow$  exists no deviation scheme  $\lambda_{(z,k)}$  s.t.

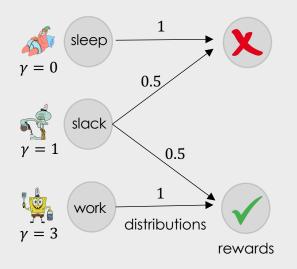
- (1) dominant sum of distributions  $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost  $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$

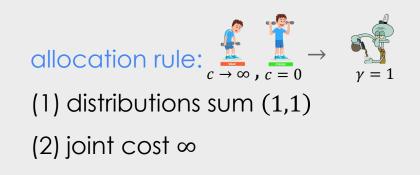


#### Example

**Theorem [ADT EC'21].** *x* **implementable**  $\Leftrightarrow$  exists no **deviation scheme**  $\lambda_{(z,k)}$  s.t.

- (1) dominant sum of distributions  $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost  $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$

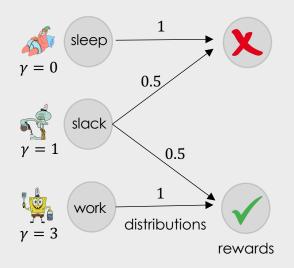




#### Example

**Theorem [ADT EC'21].** x implementable  $\Leftrightarrow$  exists no deviation scheme  $\lambda_{(z,k)}$  s.t.

- (1) dominant sum of distributions  $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost  $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$



## **Optimal Contracts and Their Issues**

- o Informational requirements, extensive analysis, etc.
- Unintuitive, e.g., non-monotonicity in rewards [DRT EC'19]

**Theorem [ADLT EC'23].** In the single dimensional typed model

- Large menu-size complexity
- Revenue non-monotonicity w.r.t type distribution

### Simple Contracts

○ In a linear contract, the principal offers a fixed share  $\alpha \in [0,1]$  of the rewards



"It is probably the great robustness of linear rules based on aggregates that accounts for

**their popularity**. That point is not made as effectively as we would like by our model; we suspect that it cannot be made effectively in any traditional Bayesian model." [Milgrom and Holmstrom 1987]

## Simple Contracts

○ In a linear contract, the principal offers a fixed share  $\alpha \in [0,1]$  of the rewards



- Robustness of linear contracts. Carroll (2015), Dütting et al. (2019), Yu and Kong (2020), Dai and Toikka (2022), Walton and Carroll (2022)
- Approximation of linear contracts. Dütting et al. (2019), Castiglioni et al. (2021), Guruganesh et al. (2021)

## Near-Optimality of Linear Contracts

- $\circ \theta(n)$  separation for point-mass distributions [DRT EC'19]
  - o Boundary case
- Approximately optimal with sufficient uncertainty
  - o The small-tail assumption

|                       | principal-agent instances            |
|-----------------------|--------------------------------------|
| Not small-tail        | Small-tail                           |
| Point-mass like       | Sufficient uncertainty               |
|                       |                                      |
| [Dütting et al. 2019] | Linear contracts are (near)-optimal! |

### Near-Optimality of Linear Contracts

**Theorem [ADLT EC'23]**. **Revenue** benchmark:

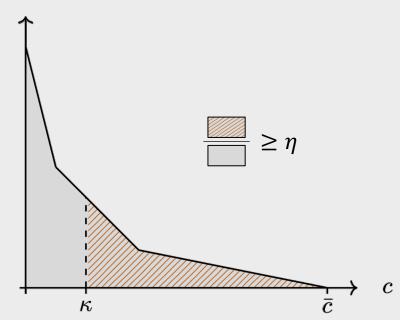
- **3-approximation** for normal  $\mathcal{N}(\mu, \sigma^2)$  truncated at c = 0 with  $\sigma \ge 5\eta/2\sqrt{2}$
- **2-approximation** for uniform  $U[0, \bar{c}]$ 
  - **Optimal** when  $i^*(r, \bar{c}) = 0$
- o 2-approximation for decreasing densities (e.g., exponential)
- Constant approximation w.r.t optimal welfare benchmark [ADLT EC'23]

## The Small-Tail Assumption

**Definition [ADLT EC'23]**. Let  $\kappa \in [\underline{c}, \overline{c}], \eta \in [0,1]$ .

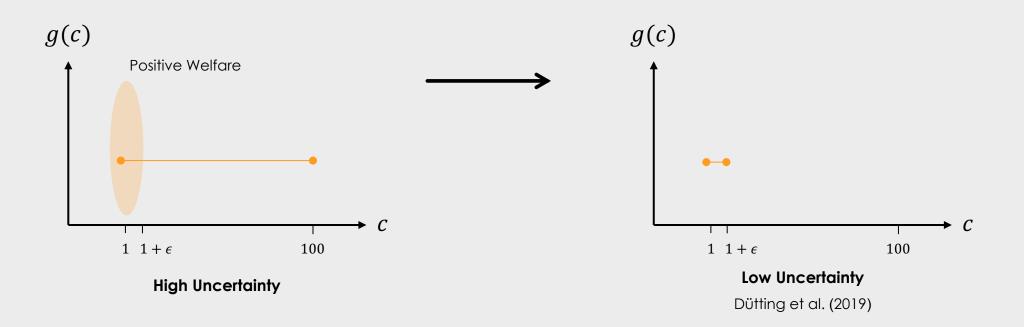
An instance is  $(\kappa, \eta)$ -small-tail if  $\operatorname{Wel}_{[\kappa, \overline{c}]} \ge \eta \operatorname{Wel}_{[c, \overline{c}]}$ 

 $\operatorname{Wel}(c)$ 



### The Small-Tail Assumption

Depends on the entire principal-agent setting



### Universal Approximation Guarantee

**Theorem [ADLT EC'23].** Let  $q \in (0,1)$  and  $G(c_q) = q$ . If for  $\alpha, \eta \in (0,1)$  the settings is

 $(\frac{c_q}{\alpha},\eta)$ -small-tail then linear contract  $\alpha$  is at least  $(1 - \alpha)\eta q$  of the optimal welfare

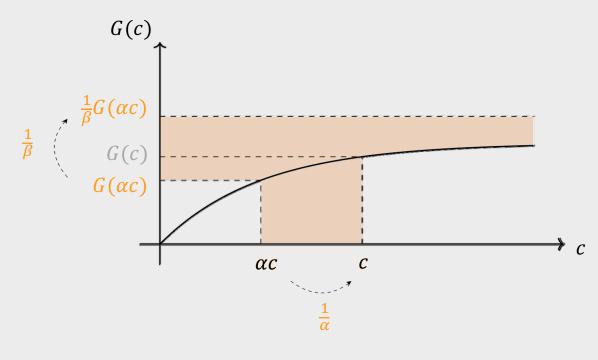
# Slowly-Increasing Distributions

- Applies to any CDF and captures its rate of increase
- Parametric **approximation** of linear contracts
- Any distribution is slowly-increasing for some parameters

### Slowly-Increasing Distributions

**Definition [ADLT EC'23].** Let  $\alpha, \beta \in (0,1)$ , and  $\kappa \in [\underline{c}, \overline{c}]$ . A distribution G is  $(\alpha, \beta, \kappa)$ -

slowly-increasing if  $G(c) \leq \frac{1}{\beta}G(\alpha c) \ \forall \kappa \leq c$ 



#### Approximation for Slowly Increasing

**Theorem [ADLT EC'23].** Let  $\alpha, \beta, \eta \in (0,1)$ , and  $\kappa \in [\frac{c}{\alpha}, \overline{c}]$ .

Under  $(\alpha, \beta, \kappa)$ -slowly-increasing and  $(\kappa, \eta)$ -small-tail

linear contract  $\alpha$  is  $(1 - \alpha)\beta\eta$  of the optimal welfare

#### Proof Idea for Slowly Increasing

**Step 1.** Revenue of linear contract  $\alpha$  is at least  $1 - \alpha$  of its welfare

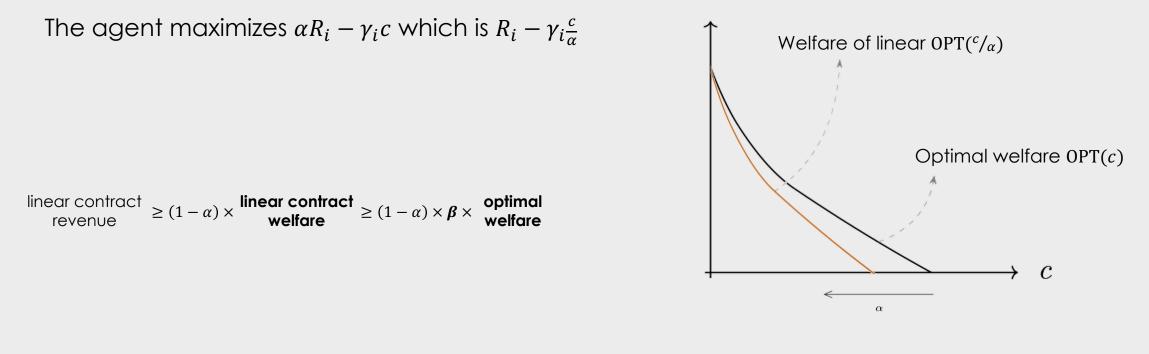
$$\begin{split} \text{revenue of linear contract} \\ \mathbb{E}_{c \sim G}[(1 - \alpha)R_{x(c)}] \\ \end{split} \\ & \geq (1 - \alpha) \times \\ \mathbb{E}_{c \sim G}[R_{x(c)} - \gamma_{x(c)}c] \\ \end{split} \\ \end{split}$$
 welfare of linear contract \\ \mathbb{E}\_{c \sim G}[R\_{x(c)} - \gamma\_{x(c)}c] \\ \end{split}

### Proof Idea for Slowly Increasing

**Step 2.** welfare of linear contract  $\alpha$  is at least  $\beta$  of the optimal welfare

 $\circ$  When maximizing welfare, the agent maximizes  $R_i - \gamma_i c$ 

 $\circ$  For linear contract  $\alpha$ :



## Summary and Future Directions

- Single-parameter model of types
- Characterization of the design space
- Counter-intuitive and **undesirable** properties of **optimal contracts**
- o Linear contracts are near-optimal

#### **Future directions:**

- Other forms of simple contracts that are near-optimal
- Contracts that involve multiple agents
- Applications of this theory

#### Thank You!

alontal@campus.technion.ac.il

www.talalon.org

