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Modern Algorithms in Society
o Interactions with self-interested individuals

o Challenges beyond computational tractability

o Take incentives into account
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Social Media Marketing
o - in the social platform feed

o - a brand hires popular users

Paid Ads 

Influencer Marketing
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Paid Ads 
o Algorithmic auction - advertisers bid → allocation and payments

Algorithm

ü Computational Complexity

ü Achieving optimality

ü Incentivize truthfulness

→ →Input Output

hidden 
type
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Influencer Marketing
o The algorithm determines a contract to incentivize effort

Algorithm

ü Computational Complexity

ü Achieving optimality

ü Incentivize effort

→ →Input Output
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o Objective: a contract maximizing expected rewards minus payment 𝔼[𝑟 − 𝑡]
o Moral hazard - the agent’s actions cannot be observed

The Principal-Agent Problem [GH83]

6

agent principal

stochastic outcome 
reward 𝑟 for the principal
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payment 𝑡



Research Agenda 
Generalizations of the classic model:

o Personalization for participants from diverse population (with types)

o Multilateral contracts involving multiple principals or agents

o The need for simple contracts
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Research Agenda 

Algorithm

ü Computational Complexity

ü Achieving optimality

ü Incentivize effort

ü Incentivize truthfulness

Input Output
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hidden 
type

hidden 
action



Outline

10

o Single-parameter model of types [ADT.C. EC’21]

o Motivated by single-parameter auction design

o Characterization of the design space [ADT.C. EC’21]

o Counter-intuitive and undesirable properties of optimal contracts [ADLT.C. EC’23]

o Linear contracts (aka commission-based) are near-optimal [ADLT.C. EC’23]
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Recent works on contracts with types. Myerson (1982), Guruganesh et al. (2021), 

Castiglioni et al. (2021), Gottlieb and Moreira (2022), Casto-Pire et al. (2022).



The Model
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o The classic principal-agent model by Grossman-Hart (1983)
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Notation. 𝑇% = 𝔼&∼(" 𝑡& , 𝑅% = 𝔼&∼(" 𝑟&

o Agent’s action 𝒊∗ maximizes 𝑇% − 𝑐%

o Principal’s revenue 𝑅%∗ − 𝑇%∗
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The Model
o Type is drawn from 𝐺 with density 𝑔 supported on 𝐶 = [𝑐, ̅𝑐]
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The Model
o A contract 𝒙, 𝒕 consists of two mappings:

o Payment rule 𝑡: 𝐶 → ℝ! from types to a paymet scheme

o Allocation rule 𝑥: 𝐶 → [𝑛] from types to an action recommendation

Notation. 𝑇"# = 𝔼$∼&$[𝑡(𝑐)$]

o Agent 𝒄 report �̂� and action 𝑖∗(𝑐) maximize 𝑇"∗(#)
#̂ − 𝛾"∗ # 𝑐

o A contract 𝑥, 𝑡 is incentive compatible (IC) if 𝑐 = �̂� and 𝑥 𝑐 = 𝑖∗(𝑐)

o Principal’s contract maximizes 𝔼#∼+[𝑅, # − 𝑇,(#)
# ] s.t. IC

o Welfare sum of utilities 𝔼#∼+[𝑅"∗(#) − 𝛾"∗ # 𝑐]
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Design Space Characterization

Definition. Allocation rule 𝑥 is implementable if exists payment rule 𝑡 s.t. (𝑥, 𝑡) is IC

Q. What do implementable allocation rules look like?
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pure hidden-action
characterization

pure hidden-type
characterization
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Design Space Characterization
Pure hidden action
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Design Space Characterization
Pure hidden action
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o 𝑥 is implementable ⟺ exists no deviation scheme 𝜆! s.t. (1) dominant distribution ∑! 𝜆!𝐹! ≥ 𝐹"
(2) strictly lower cost ∑! 𝜆!𝑐! < 𝑐"
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Design Space Characterization
Pure hidden action
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Design Space Characterization
Pure hidden action
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𝑐 = 0+0.5×
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Design Space Characterization
Pure hidden action

1

actions rewards
distributions

1

is not implementable

3

𝑐 = 0

𝑐 = 2

𝑐 = 3

𝑐 = 3

𝑐 = 1.5

sleep

work

o 𝑥 is implementable ⟺ exists no deviation scheme 𝜆! s.t. (1) dominant distribution ∑! 𝜆!𝐹! ≥ 𝐹"
(2) strictly lower cost ∑! 𝜆!𝑐! < 𝑐"
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0.5×

o LP duality approach



Design Space Characterization
Pure hidden type
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Design Space Characterization
Pure hidden type
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o 𝑥 is implementable ⟺ 𝑥 is monotone [Myerson 1981]
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Design Space Characterization
Pure hidden type
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Design Space Characterization
Hidden type and hidden action
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Design Space Characterization
Hidden type and hidden action

Proposition [ADT EC’21]. If 𝑥 is implementable, it is monotone

Monotone piecewise-constant allocation rule 𝑥: 𝐶 → [𝑛]
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𝑐 = ∞𝑐 = 0
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Design Space Characterization

Corollary [ADT EC’21]. Optimal contract is polytime computable for const #actions

Theorem [ADT EC’21]. 𝑥 implementable ⟺ exists no deviation scheme 𝜆(-,/) s.t.

(1) dominant sum of distributions ∑-,/ 𝜆(-,/)𝐹/ ≥ ∑-𝐹, -

(2) strictly lower joint cost ∑-,/ 𝜆(-,/)𝛾/𝑧 < ∑- 𝛾,(-)𝑧

Hardness for constant #actions in the multi-parameter model [Guruganesh-Schneider-Wang’21]

Agenda – The-model – Solution-Space-Characterization – Simple-vs-Optimal-Contracts – Future-Directions



Example

1

0.5

rewards
distributions

0.5

1 𝑐 → ∞ 𝑐 = 0

𝛾 = 0

𝛾 = 1

𝛾 = 3

sleep

slack

work
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Theorem [ADT EC’21]. 𝑥 implementable ⟺ exists no deviation scheme 𝜆(6,8) s.t.

(1) dominant sum of distributions ∑6,8 𝜆(6,8)𝐹8 ≥ ∑6𝐹: 6

(2) strictly lower joint cost ∑6,8 𝜆(6,8)𝛾8𝑧 < ∑6 𝛾:(6)𝑧



Example
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(2) joint cost ∞
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𝛾 = 1𝑐 → ∞ 𝑐 = 0

Theorem [ADT EC’21]. 𝑥 implementable ⟺ exists no deviation scheme 𝜆(6,8) s.t.

(1) dominant sum of distributions ∑6,8 𝜆(6,8)𝐹8 ≥ ∑6𝐹: 6
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Example

1

0.5

rewards
distributions

0.5

1

𝛾 = 0

𝛾 = 1

𝛾 = 3

deviation:

(1) distributions sum 1,1

(2) joint cost 0

→,→

sleep

slack

work
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→, 𝛾 = 1𝑐 → ∞ 𝑐 = 0

𝑐 → ∞ 𝑐 = 0𝛾 = 0 𝛾 = 3

Theorem [ADT EC’21]. 𝑥 implementable ⟺ exists no deviation scheme 𝜆(6,8) s.t.

(1) dominant sum of distributions ∑6,8 𝜆(6,8)𝐹8 ≥ ∑6𝐹: 6

(2) strictly lower joint cost ∑6,8 𝜆(6,8)𝛾8𝑧 < ∑6 𝛾:(6)𝑧
allocation rule:

(1) distributions sum 1,1

(2) joint cost ∞



Optimal Contracts and Their Issues
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o Informational requirements, extensive analysis ,etc.

o Unintuitive, e.g., non-monotonicity in rewards [DRT EC’19]

Theorem [ADLT EC’23]. In the single dimensional typed model 

o Large menu-size complexity 

o Revenue non-monotonicity w.r.t type distribution



Simple Contracts
o In a linear contract, the principal offers a fixed share 𝛼 ∈ [0,1] of the rewards

100$ 50$ to agent
50$ to principal

“It is probably the great robustness of linear rules based on aggregates that accounts for 

their popularity. That point is not made as effectively as we would like by our model; we 

suspect that it cannot be made effectively in any traditional Bayesian model.” [Milgrom 

and Holmstrom 1987]
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Simple Contracts
o In a linear contract, the principal offers a fixed share 𝛼 ∈ [0,1] of the rewards

100$ 50$ to agent
50$ to principal
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o Robustness of linear contracts. Carroll (2015), Dütting et al. (2019), Yu and Kong (2020), Dai 

and Toikka (2022), Walton and Carroll (2022)

o Approximation of linear contracts. Dütting et al. (2019), Castiglioni et al. (2021), 

Guruganesh et al. (2021)



Near-Optimality of Linear Contracts
o 𝜽(𝒏) separation for point-mass distributions [DRT EC’19]

o Boundary case

o Approximately optimal with sufficient uncertainty

o The small-tail assumption

principal-agent instances 

[Dütting et al. 2019]

Small-tailNot small-tail

Point-mass like Sufficient uncertainty

Linear contracts are (near)-optimal!
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Near-Optimality of Linear Contracts
Theorem [ADLT EC’23]. Revenue benchmark:

o 3-approximation for normal 𝒩(𝜇, 𝜎0) truncated at 𝑐 = 0 with 𝜎 ≥ ⁄5𝜂 2 2

o 2-approximation for uniform 𝑈[0, ̅𝑐]

o Optimal when 𝑖∗ 𝑟, ̅𝑐 = 0

o 2-approximation for decreasing densities (e.g., exponential)

o Constant approximation w.r.t optimal welfare benchmark [ADLT EC’23]
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The Small-Tail Assumption
Definition [ADLT EC’23]. Let 𝜅 ∈ [𝑐, ̅𝑐], 𝜂 ∈ 0,1 . 

An instance is 𝜿, 𝜼 -small-tail if Wel[2, ̅#] ≥ 𝜂Wel #, ̅#

≥ 𝜂
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The Small-Tail Assumption

𝑔(𝑐)

𝑐
1 100

𝑔(𝑐)

𝑐
1 100

Positive Welfare 

1 + 𝜖 1 + 𝜖

High Uncertainty Low Uncertainty

Depends on the entire principal-agent setting

Dütting et al. (2019)

Agenda – The-model – Solution-Space-Characterization – Simple-vs-Optimal-Contracts – Future-Directions



Universal Approximation Guarantee
Theorem [ADLT EC’23]. Let 𝑞 ∈ (0,1) and 𝐺 𝑐5 = 𝑞. If for 𝛼, 𝜂 ∈ 0,1 the settings is 

(#=
6
, 𝜂)-small-tail then linear contract 𝛼 is at least 𝟏 − 𝜶 𝜼𝒒 of the optimal welfare
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Slowly-Increasing Distributions
o Applies to any CDF and captures its rate of increase

o Parametric approximation of linear contracts 

o Any distribution is slowly-increasing for some parameters
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𝐺(𝑐)
𝐺(𝛼𝑐)

!
>𝐺(𝛼𝑐)

Slowly-Increasing Distributions

Definition [ADLT EC’23]. Let 𝛼, 𝛽 ∈ 0,1 , and 𝜅 ∈ 𝑐, ̅𝑐 . A distribution 𝐺 is 𝜶, 𝜷, 𝜿 -

slowly-increasing if 𝐺 𝑐 ≤ 7
8
𝐺(𝛼𝑐) ∀𝜅 ≤ 𝑐

𝛼𝑐 𝑐

!
?

𝛼𝑐 𝑐

!
>

𝑐

𝐺(𝑐)
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Approximation for Slowly Increasing

Theorem [ADLT EC’23]. Let 𝛼, 𝛽, 𝜂 ∈ 0,1 , and 𝜅 ∈ ⁄# 6 , ̅𝑐 .

Under (𝜶, 𝜷, 𝜿)-slowly-increasing and (𝜿, 𝜼)-small-tail 

linear contract 𝛼 is 𝟏 − 𝜶 𝜷𝜼 of the optimal welfare
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optimal 
welfare

Proof Idea for Slowly Increasing
Step 1. Revenue of linear contract 𝛼 is at least 1 − 𝛼 of its welfare
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revenue of linear contract

𝔼#∼+[(1 − 𝛼)𝑅,(#)]
≥ 𝟏 − 𝜶 ×

welfare of linear contract

𝔼#∼+[𝑅,(#) − 𝛾,(#)𝑐]

linear contract
revenue ≥ 𝟏 − 𝜶 × linear contract

welfare ≥ 1 − 𝛼 × 𝛽 ×



Proof Idea for Slowly Increasing
Step 2. welfare of linear contract 𝛼 is at least 𝛽 of the optimal welfare
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o When maximizing welfare, the agent maximizes 𝑅# − 𝛾#𝑐

o For linear contract 𝛼:

The agent maximizes 𝛼𝑅# − 𝛾#𝑐 which is 𝑅# − 𝛾# 67

Optimal welfare OPT(𝑐)

Welfare of linear OPT( ⁄& ')

optimal 
welfare

linear contract
revenue ≥ 1 − 𝛼 × linear contract

welfare ≥ 1 − 𝛼 × 𝜷 ×



Summary and Future Directions
o Single-parameter model of types 

o Characterization of the design space

o Counter-intuitive and undesirable properties of optimal contracts

o Linear contracts are near-optimal

Future directions:

o Other forms of simple contracts that are near-optimal

o Contracts that involve multiple agents

o Applications of this theory
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